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The effect of spatial periodicity in grain structure on the average transport properties 
resulting from flow through porous media are derived from the basic conservation 
equations. A t  high PBclet number, the mechanical dispersion that is induced by the 
stochastic fluid velocity field in disordered media and is independent of the molecular 
diffusivity is absent in periodic media where the velocity field is deterministic. 
Instead, the fluid motion enhances diffusion by an amount proportional to U212/D 
when the bulk flow is in certain directions (of which there are an infinite number), and 
to D otherwise. The non-mechanical dispersion mechanisms associated with the zero 
velocity of the fixed grains is qualitatively similar in ordered and disordered 
media. 

1. Introduction 
The study of spatially periodic porous media is of theoretical interest because the 

problem of determining the transport properties of such media may be reduced to a 
convection-diffusion problem in a single unit cell. Thus, it is straightforward to treat 
transport in ordered media in relative completeness. Brenner (1980) and Brenner & 
Adler (1982) have applied generalized Taylor dispersion theory to provide a 
framework for determining the effective diffusivity in spatially periodic porous 
media. The purpose of the present paper is to calculate this diffusivity and elucidate 
its dependence on the PBclet number P = Ul/D, where U is the average flow rate 
through the medium, 1 is a lengthscale characteristic of the microscale (for periodic 
media it will be the lattice spacing h) ,  and D is the molecular diffusivity of the tracer 
or diffusing species in the fluid. 

Porous media normally encountered in practice do not possess long-range order, so 
it is important to understand what aspects of the dispersion mechanisms predicted 
in spatially periodic media are artifacts of the periodicity constraint. Koch & Brady 
(1985) used a method based on ensemble averaging the basic conservation equations 
over the possible configurations of the grain structure to predict the effective 
diffusivity in disordered porous media. It was shown that there are three types of 
mechanisms causing dispersion at high Pkclet number in disordered media : (i) 
Mechanical dispersion, which is proportional to Ul and results from the stochastic 
velocity field induced by the randomly distributed solid boundaries independent of 
molecular diffusion. (ii) Holdup dispersion which grows as U212/D and occurs when 
the solute is trapped in regions from which it can escape only by molecular diffusion. 
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These include the interior of the solid, and regions of stagnant or recirculating fluid. 
(iii) Boundary-layer dispersion, which grows as Ul(ln ( U I D ) )  and arises from the 
diffusive boundary layers near the solid surfaces where both convection and 
molecular diffusion influence solute transport. The boundary-layer and holdup 
mechanisms arise owing to the local boundary conditions a t  the solid grains, and so 
they are present in both ordered and disordered media. 

However, we shall see that the dispersion that occurs owing to the fluid motion 
(outside the solid and the boundary layers near solid surfaces) is qualitatively 
different in ordered and disordered media. In a disordered medium the macroscopic 
transport results from a purely mechanical process on the microscale in which the 
solute particle’s velocity disturbance becomes uncorrelated with its initial position as 
the particle is convected through the random microstructure. In an ordered medium 
this mechanism is absent as the microstructure is spatially periodic, and i t  will be 
seen that molecular diffusion must always be considered in order that the solute 
particle may forget its initial position. 

In $2 we briefly review the theoretical framework required for the calculation of 
the effective diffusivity. In $3  we show that in general the dispersion occurring in the 
bulk fluid gives rise to either an O( U2l2/D) Taylor dispersion contribution or an O(D) 
enhanced molecular diffusion contribution to the effective diffusivity. The latter 
O(D) contribution is influenced by the flow field, although it is of the same order of 
magnitude as the molecular diffusivity. We obtain a criterion for whether Taylor 
dispersion or enhanced molecular diffusion is obtained. 

In $4 we examine two examples : that of (i) bulk flow parallel to one of the primary 
axes of a simple cubic array of spheres for which Taylor dispersion is obtained, and 
(ii) flow parallel to no axis of symmetry for the lattice giving enhanced molecular 
diffusion. The results are compared with the experiments of Gunn & Pryce (1969) on 
ordered porous media. 

2. Theoretical framework 
In this section we shall give a brief derivation of the effective diffusivity. More 

detailed developments for systems with spatial periodicity are to be found in Brenner 
(1980) and Brenner & Adler (1982) and for systems of arbitrary structure in Koch & 
Brady (1985, 1987) and Koch (1986). 

If the Reynolds number based on a typical lengthscale for the grain structure is 
small, the equations of motion are Stokes equations 

v . u  = 0, - o p + p v 2 u  = 0 (2 . la ,  b )  

for points in the fluid phase, and for points in the solid 

u = 0, (2.lc) 

where p is the dynamic pressure in the fluid, u the velocity and p the viscosity; p is 
indeterminate in the particles. 

If we neglect any variation in the molecular diffusivity and solubility of the 
diffusing species in the fluid and solid phases and assume that the concentration of 
this species is small, its concentration c satisfies 

ac 
-+v*q = 0, 
at 

(2.2a) 
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with the mass flux q given by 
q = uc-DVC, (2.2b) 

where D is the molecular diffusivity of the solute or diffusing species. 

concentration. Thus, we average (2.2) to obtain 
We wish to determine the relationship between the average flux and average 

a(c> - + V - ( q )  = 0, 
at 

( 2 . 3 ~ )  

( 4 )  = ( u c ) - D V ( C )  = ( u ) ( c ) + ( u ’ c ’ ) - D V ( C ) ,  (2.3b) 

where c‘ = c- ( c )  is the concentration fluctuation about its mean, and ti‘ = u - ( u )  
is the velocity fluctuation. 

The average indicated by ( ) may be considered as a ‘configurational average 
over an ensemble of media with different detailed structures (Koch & Brady 1987). 
This configurational average is most convenient for treating non-periodic media. In 
spatially periodic media this average reduces to a volume average over a single unit 
cell 1 

dx7 
unit 
cell 

where V is the volume of the unit cell. (In a periodic medium the configurational 
average is taken over an ensemble of media each with identical periodic structures 
but with their structures translated relative to the coordinate frame in which the 
average concentration field is defined.) 

The equation for the concentration disturbance is obtained by subtracting (2.3) 
from (2.2) to give 

(2.4) 
ac’ 
at 
-+ V * [UC’ -DVc‘] = - U’ * V ( C )  + V * (u‘c’). 

Thus, in general the concentration fluctuation c‘ is a linear functional of the average 
concentration gradient. When the average concentration gradient is a constant 
independent of space and time and ( ) is interpreted as a configurational ensemble 
average, u’ and c‘ are stationary random functions so that (u’c’) is independent of 
position and the second term on the right-hand side of (2.4) is zero. (Alternatively, 
this term may be seen to be zero by applying ( ) interpreted as a volume average 
over the unit cell, applying the divergence theorem, and noting that u’c’ is a spatially 
periodic function.) The concentration disturbance is then simply proportional to the 
average concentration gradient 

C’ = B . V ( c ) ,  (2.5) 

where we have introduced the so-called ‘B-field’ of Brenner (1980).t 
Inserting (2.5) with (2.4) into the average mass conservation equation (2.3 b ) ,  we 

obtain 
( 4 )  = (u> ( c>-D’V<c) ,  (2.6a) 

where D = DI- (u’B), (2.6b) 

and V.[uB-DVB] = -u’. ( 2 . 6 ~ )  

The retention of the time derivative in (2.2) and (2.3) is essential because the average 
concentration field 

( c )  = V ( c )  - [x - <u)  t ]  

t This is actually the spatially periodic field B in Brenner’s notation. 
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possessing a constant gradient, V ( c ) ,  is time dependent owing to the effects of bulk 
convection. The B-field, however, is time independent for a constant concentration 
gradient. 

We have used an Eulerian definition of the effective diffusivity as the average flux 
due to a given concentration gradient. If the gradient is not constant but varies 
slowly on the lengthscale of the bed microstructure, (2 .6 )  may be derived through a 
multiple scales analysis (Koch & Brady 1987). The Lagrangian or moments 
diffusivity (Brenner 1980), defined as the time rate of change of the mean-squared 
displacement of the distribution of a tracer a t  long times, is the symmetric part of 
the Eulerian diffusivity (2 .6  b ) .  This distinction is significant, and antisymmetric 
components of the Eulerian diffusivity arise in media whose structures lack 
reflectional symmetry (Koch & Brady 1987). We shall restrict ourselves here to the 
determination of the symmetric part of the diffusivity. Brenner (1980) defined the 
diffusivity in terms of an average over an ensemble of tracer experiments in which 
a tracer particle is introduced at the same position in the same medium and showed 
that in the limit of long times following the release of this tracer in a periodic medium 
its mean-squared displacement grew as $DL t ,  where D, = sym D and D is given by 
(2 .6b )  with the average ( ) defined as a volume average over a unit cell ( 2 . 6 d ) .  Thus, 
with the exception of the ‘possible antisymmetric components of the effective 
diffusivity the Eulerian and Lagrangian definitions give the same diffusivity. 

3. General behaviour of the effective diffusivity 
In this section we shall examine the functional dependence .of the effective 

diffusivity ( 2 . 6 b )  on the PBclet number P = Uh/D in the limit of high PBclet number. 
Here h is the characteristic size of the unit cell. We are interested here in the 
dispersion that arises in the bulk fluid phase and not in the boundary-layer dispersion 
that will arise in the slow moving fluid near solid surfaces. Thus, in the following 
development it will be assumed that the leading contributions to the dispersion come 
from finite wavenumber contributions to the B-field. Any boundary-layer dispersion 
contributions would arise from infinitely large wavenumbers in the high-Pkclet- 
number limit. It will be seen that the bulk fluid phase dispersion is most sensitive to 
the presence of order. 

The symmetric part D, of the effective diffusivity (2 .6b )  is 

D =I-- ’ / dx[u’B+Bu’], (3 .1 )  
2 P  unit 

cell 

where we have non-dimensionalized the effective diffusivity with the molecular 
diffusivity D, the velocity with its average U ,  and all lengths with h = %. Using 
(2 .6c ) ,  (3.1) may be written as 

D, = /+ p 1 dx{ V - [ uB- f V B ]  B+ BV - [uB-: VB]}. 
T.’ unit 

cell 

Integration by parts followed by application of the divergence theorem yields 

D, = /+- dx[VBsVB+]+pL/ ~#~.[uBB-~V(BB)] ,  1 (3 .3 )  

V unit ‘s cell 
V unit 

cell 

where n is the outward unit normal of the unit cell. The quantity in brackets in the 
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final integral is spatially periodic so the integral over opposite faces of the cell cancel, 
and the entire integral is zero. Thus, we obtain 

cell 

(3.4) 

This is just the form given by Brenner (1980) in his equation (6.13) with (8.14). 

its convolution theorem, (3.4) may be written as 
Introducing the three-dimensional finite Fourier transform denoted by A and using 

D, = /+ 47t2k28(k) 8( - k), 
k 

(3.5) 

where the summation is over all integral values of n,, n2, and n3 in 

k = n,b,+n,b,+n,b,. 

Here, b, = h, x h,/V etc. are the vectors defining the reciprocal lattice, h,, h,, h, are 
the sides of the real space unit cell, and V = h, - (h, x h2) is the volume of the unit cell 
(Hasimoto 1959). The transform is defined by 

G(k) = dxe-2"ik.x u(x), I,,, cell 

and the inverse transform by 

u(x) = Z ezxik.xG(k). 
k 

Transforming the equation (2 .6~)  for the B-field yields 

1 
47t2-k28(k)+2nX4k-k' ) . ik '~(k ' )  = -G'(k). 

P k 

From (3.5) and (3.6) it is apparent that the effective diffusivity is independent of 
the PBclet number in the limit of high PBclet number, if 

27t X G( k - k') - ik'g(k') = - u' (k), (3.7) 
k 

has a solution. This correspond to the requirement that a matrix A = 27tG(k- k').ik', 
having as its rows all the possible values of k and as its columns all possible values 
of k', should be non-singular. This in turn requires that 

Ag = 27t~G(k-k')-ik'4k') = 0 
k 

should have no non-trivial solutions or that 

u-VB = 0 

should have no non-trivial periodic solutions. (By non-trivial solution we mean a 
solution for which B is not a constant everywhere.) The solution of (3.9) is that B is 
constant along any streamline. Equation (3.9) has no non-trivial solutions and 
ID,l N O(Po), if all streamlines are equivalent in the sense that each and every 
streamline when plotted within a single cell fills the space within the cell completely. 
In other words, (3.9) has no non-trivial solutions if a tracer particle released 
anywhere in the unit cell eventually samples the entire unit cell by convection 
alone. 
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If there are a t  least two non-equivalent streamlines (3.9) has non-trivial solutions 
and (3.7) has no solution. In this case it is necessary to retain the diffusive term in 
(3.6) even in the limit of high PBclet number. Equation (3.6) may be written as a 
matrix equation 

(3.10) 

where / is the identity matrix. The singularity of the A-matrix means that it has 
a t  least one zero eigenvalue. Adding 4n2(l/P) k2/ to A has the effect of adding 
4n2(1/P) k2 to each eigenvalue. Thus, the smallest eigenvalue of A +4n2( l/P) k2/ is 
O(l/P) and the largest eigenvalue of (A +4n2(1/P) k2/)-l  is O(P) (Stewart 1973, p. 
266). The largest eigenvalue A, is known as the spectral radius of a matrix and 
has the property that for any positive constant E there exists a consistent matrix 
norm ( 1  11 (Stewart 1973, p. 284), such that 

where 11 11 and 1 1 denote compatible matrix and vector norms. From (3.11) and (3.5), 
it can be seen that ID,! - O(P2),  when there are a t  least two non-equivalent 
streamlines, so that (3.9) has non-trivial periodic solutions. 

3.1. Interpretation in terms of tracer particle motion 
The high-P8clet-number behaviour of the effective diffusivity in ordered media and 
the absence of mechanical dispersion may be understood by examining the 
mechanical dispersion hypothesis and seeing why it does not apply to ordered 
media. 

The B-field may be written as 

B = - ~ E d t l j d X I P ~ x , t I ~ l . t l ~ u ~ ~ x l ~ ,  

where P,  the Green’s function for (2.6c), is the transition probability giving the 
probability that a tracer a t  point x, a t  time t, transits to x a t  time t. Thus, (2.6b) 
may be written as a velocity correlation function 

) D = D / +  ( u ’ ( x )  lE dt, P x ,  P ( x ,  t 1 x, t l )  u’(xl)  (3.12) 

If we neglect the effects of molecular diffusion the transition probability satisfies 

ap 
-+V-(uP) at = 6(x-x1)S(t-t,) 

The solution of (3.13) is simply a delta function, 

(3.13) 

(3.14) 

which indicates that the solute’s path is a streamline. (7, Y,9) constitute an 
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orthogonal curvilinear coordinate system with 7 as the coordinate measured along 
the streamline and h, the metric coefficient for the streamline, This characteristic is 
in the direction of the fluid velocity u. Substituting (3.14) into (3.12) gives 

(3.15) 

This is the form the effective diffusivity takes under the mechanical dispersion 
hypothesis. 

In a disordered medium the integral in (3.15) is a stochastic variable, which has 
zero mean, but is correlated with the stochasic variable u' leading to a non-zero 
symmetric, mechanical diffusivity. The solute experiences a stochastic velocity, 
which becomes uncorrelated after a large enough length of the streamline has been 
traversed. 

In ordered media, on the other hand, the structure of the medium and, therefore, 
the velocity experienced by a solute traversing a streamline, remain correlated 
throughout all space. Here, there are two possibilities: (i) All streamlines are 
equivalent and the entire unit cell is sampled by translating along a single 
Streamline.? In  this case the integral in (3.15) is zero. As the streamline fills the 
available space uniformly the integral of the velocity disturbance is equal to the 
volume-average velocity disturbance, which is zero. If two solute particles are 
released at time zero at two different points within the unit cell, they will initially 
disperse, with their separation increasing linearly with time. But, since all streamlines 
are identical, each particle follows the same trajectory and their separation does not 
grow a t  long times. The integral of the velocity along a particle path and thus the 
symmetric mechanical diffusivity is, then, zero and dispersion only occurs in the 
presence of molecular diffusion, so that ID,I - O(D). (ii) A t  least two non-equivalent 
streamlines exist, and no one streamline fills the entire unit cell. In this case the 
velocity averaged over a particle path is non-zero, so the integral in (3.15) diverges 
and the mechanical diffusivity is infinite. The solute's velocity remains correlated for 
all time, and the distance between two solute particles released on different 
streamlines (the non-equivalent ones) increases linearly with time. Thus, a diffusive 
process is obtained only if molecular diffusion across streamlines is considered. As a 
result the dispersion is non-mechanical and grows as U2h2/D like Taylor dispersion 
in a tube. Thus, there are two possible mechanisms for fluid-phase dispersion in 
ordered media, but neither resembles the mechanical dispersion encountered in 
disordered media. 

4. Examples 
In  this section we shall illustrate the dispersion mechanisms discussed above by 

examining specific spatially periodic microstructures. There is no difficulty in 
principle in calculating the transport properties of periodic media of high volume 
fraction as only t,he solution on a unit cell is required. In order to simplify the analysis, 
however, we shall obtain the asymptotic behaviour of the effective diffusivity a t  low 
solids volume fraction. This asymptotic analysis will allow us to illustrate the 

t Of course this fluid streamline cannot sample the space within the solid, and the solid always 
leads to a contribution to the diffusivity of O([UaZa/Dp] m-l), where 1 is the particle radius, D, is the 
molecular diffusivity of the tracer in the solid, and m is the ratio of the solubility of the tracer in 
the solid and fluid phases (Koch & Brady 1985); cf. the discussion in $4.4. 
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qualitative features of the transport process. We shall study a simple cubic array of 
spheres and a square array of cylinders, showing that a t  high PBclet number the 
fluid-phase dispersion may be of the Taylor-dispersion type IDJ - O ( P h 2 / D )  or 
enhanced molecular diffusion ID,I - O(D) ,  depending on the orientation of the 
average flow relative to the periodic lattice. 

4.1. Derivation of expressions for the effective diffusivity in ordered arrays 

In a periodic bed of low solids volume fraction the radii a of the particles non- 
dimensionalized by the lattice spacing h is small. The velocity disturbance caused by 
the particles may be approximated as that due to a point force 

(4.1 a )  

d ( k )  = 0, k = 0. (4.lb) 

Equation (4.1 a )  possesses errors of order a3 since in real space u‘ differs from that due 
to a point force by an O(1) amount at  O(a) distances from the sphere and by an 
O(a3) amount at  0(1) distances (Hasimoto 1959). Here the forcefexerted by the 
sphere on the fluid is non-dimensionalized by phU. A cubic array of spheres is not 
isotropic as far as velocity-induced dispersion is concerned, as will be indicated by the 
profound influence that the orientation of the average velocity relative to the 
medium structure has on dispersion. The bed permeability, however, is isotropic - 
the force f is antiparallel to the average velocity. Equation ( 4 . 1 ~ )  may be 

Except near the particle that makes a contribution O(a) smaller than the one we 
shall calculate, the velocity field on the left-hand side of (3.6) or ( 2 . 6 ~ )  for the B-field 
may be approximated by the average velocity, u x U,  so that (3.6) has the 

(4.3) 
solution 

fi’(k) 
1 
P 

B(k) = - 
47c2 - k2 + 27c iU. k 

Inserting (4.3) into the expression (3.5) for the effective diffusivity yields 

li’(k) U ( k )  k2 
D,= /+C 9 

P 
47c2 7 k4 + ( U .  k)2 

or, substituting (4.2) for the velocity disturbance, 

(4.4) 

(4.5) 

Expression (4.5) bears a close resemblance to equation (3.13) of Koch & Brady (1985) 
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for dispersion in disordered media, the major difference being an integral in the latter 
rather than a discrete sum as in (4.5). 

The two-dimensional analogue of the simple cubic array of spheres considered 
above is a square array of cylinders of infinite length. The only changes required in 
the preceding analysis in order to treat dispersion due to flow perpendicular to the 
axes of an array of cylinders are to replace the drag 6n aU on a sphere with the drag 
per unit length on a cylinder a t  low volume fraction 4x U/[ln (6') - 1.30151 
(Hasimoto 1959), and to interpret k as a two-dimesional reciprocal lattice vector. 
The resulting effective diffusivity is, in place of (4.5), 

The low-PBclet-number behaviour of the convective contribution to the diffusivity 
may be obtained by neglecting the convective term (U. k)2 in the denominator of 
(4.5) or (4.6), resulting in a contribution proportional to P2.  This result is similar to 
that obtained in disordered media (Koch & Brady 1985). At low PBclet number the 
solute samples the microstructure primarily by molecular diffusion in both ordered 
and disordered structures. In  addition to the convectively enhanced dispersion 
considered here, the difference in the molecular diffusivity in the fluid and solid 
phases affects dispersion. This contribution, which is proportional to the molecular 
diffusivity, has been calculated by Sangani & Acrivos (1983) for period arrays of 
spheres and by Rayleigh (1892) and Perrins, McKenzie & McPhedran (1979) for 
periodic arrays of cylinders. In  the present analysis we have avoided treating these 
effects by assuming that the molecular diffusivity and solubility of the solute are 
equal in the fluid and solid phases. 

4.2. Justijcation for the presence of Taylor dispersion in certain medium structures 
using symmetric arguments 

In the preceding analysis we have neglected terms of O(a) in the velocity field on the 
left-hand side of ( 2 . 6 ~ )  or (3.6) for the B-field and retained the O(P-l)  diffusive terms. 
The diffusive term differs qualitatively from the convective term (involving a second 
derivative rather than a first derivative of the B-field), and it must be retained no 
matter how high the PBclet number. Successively higher approximation in small a 
may be obtained by including better approximations to the velocity field in (3.6), but 
in each successive calculation the diffusive term must be retained. Superficially, it 
would appear that the first approximation in small a is only valid if P 4 a-l. 
However, the results (4.5) and (4.6) obtained may be justified at arbitrarily large 
PBclet number if it can be shown that the neglected terms do not change the 
PBclet-number dependence of the effective diffusivity. That this is so will now be 
demonstrated. 

According to (4.5) and (4.6), O(P2) Taylor-dispersion contributions for the effective 
diffusivity are obtained if U. k = 0 for any k, i.e. if the bulk flow is perpendicular to 
any vector in the reciprocal lattice structure. In  a cubic array the lattice structure 
in real space is identical to the reciprocal lattice structure and Us k = 0 if the velocity 
is perpendicular to any separation vector in the real-space lattice. In  $3 we showed 
that the necessary and sufficient criterion for Taylor dispersion a t  high PBclet 
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FIGURE 1. (a)  The lines of translational symmetry parallel and perpendicular to the bulk flow 
direction in a square array are illustrated. The streamlines repeat themselves in the interval 
between each of the lines of symmetry perpendicular to the flow. ( b )  A typical streamline in the unit 
cell of a cubic array of spheres is illustrated for flow parallel to a primary axis for the lattice. The 
faces of the unit cell are planes of reflectional and translational symmetry. The symmetry of the 
bed structure and the reversibility of low-Reynolds-number flows require that a streamline that 
passes through a point (x, y, z )  on one face of the unit cell must pass through the corresponding 
point (5, y, z+h) on the opposite face. 

numbers is that u.VB = 0 (equation (3.9)) have non-trivial periodic solutions. If we 
approximate the fluid velocity u by its average U this criterion reduces to U.k = 0. 
In order to justify the use of (4.5) and (4.6) at high PBclet numbers, however, we must 
show that (3.9) also has non-trivial solutions if we retain the full velocity field u. It 
can be shown through arguments based on symmetry and continuity that Taylor 
dispersion is obtained and (4.6) is valid a t  high PBclet number for the case of flow 
parallel to an axis of translational symmetry in the two-dimensional array of 
cylinders. 

In a square array U-k = 0 implies that the bulk velocity U is parallel to a set of 
lines of translational symmetry and perpendicular to a second set of lines of 
translational symmetry, as illustrated in figure l(a). From the definition of the 
average flow it is clear that there can be no net flow across any of the lines of 
translational symmetry which are parallel to the average flow. Further, there can be 
no net flow across the line segment AB in figure 1 (a) formed by the intersection with 
lines of translational symmetry perpendicular to the flow. As the streamlines cannot 
cross, this requires that a streamline that goes through A must go through B and 
then through C ,  etc. Thus, the streamlines repeat themselves and there are non- 
trivial solutions to (3.9) if the flow in a two-dimensional square array is parallel to 
any axis of translational symmetry. This result is independent of the configuration 
of the fluid-solid boundaries in the unit cell. 

When the average flow is perpendicular to a set of planes of both translational and 
reflectional symmetry, such as the (100)-planes in a cubic array of spheres, symmetry 
and reversibility require that the streamlines repeat themselves. Here (100) is the 
Miller index notation for the planes parallel to one of the primary axes of the array. 
If (z, y, z )  is a Cartesian coordinate system with its axes parallel to the primary axes 
of the array and the bulk flow is in the z-direction, the streamlines must intersect 
each symmetry plane at  the same (z, y)-coordinates, as illustrated in figure 1 (b ) .  If 
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the streamlines did not pass through the same (z, y)-coordinates, then upon reversal 
the fluid would not return to its original position, thus violating the principle of 
reversibility of low-Reynolds-number flow. Thus, for flows perpendicular to planes of 
translational and reflectional symmetry such as the flow parallel to the primary axis 
of a cubic array of spheres, streamlines repeat themselves, (3.9) has non-trivial 
solutions and Taylor dispersion is obtained. The only effect of including the O(a) 
convective terms on the right-hand side of (3.6) would be to deflect the streamlines 
slightly making a small change in the coefficient in the O(P2) Taylor-dispersion 
contribution to the effective diffusivity. 

4.3. Justification for the presence of Taylor dispersion in a wider class of structures 
for P 4 a+ 

For the cubic array of spheres (3.6), with the terms of O(a) included, may be written 
as 

where, for k = k’ 

X A ( k ,  k’) &k’) = zL(l-5)- 2n: k2 U, 
& * O  

A(k,k’ )  = { 2 ~ i U - k + 4 n : P - ~ k ~ } ,  

and for k + k  
A ( k , k )  = 

Thus 

(4.7) 

( 4 . 8 ~ )  

(4.8b) 

(4.9) 

which upon neglect of the terms of O(a) reduces to (4.5). 
If the bulk flow velocity U is such that 

U * k  = 0 (4.10) 

possesses no non-trivial solutions for k ,  it  may be shown after a straightforward but 
lengthy consideration of the form of the elements of A and hence of A-’ for small a 
a n d p ’ ,  that Ds-I is of O(a2),  being 

9a2 
Ds-l=-  C 

41t2k*0 k*(U’k)2 ’ 
(4.11) 

which is, at lowest order, identical to (4.5). 

situations can occur. Either the solution for k is a line of points 
If U is in a direction for which (4.10) does possess non-trivial solutions for k ,  two 

k = ra (r  is a non-zero integer) (4.12) 

(as occurs if U is in the direction n, +An, where n, and n, are vectors with integer 
elements and A is irrational) or the solution for k is a plane of points 

(4.13) 

(as occurs if Uis in the direction n,, where n, is a vector with integer elements). Again 
we consider the form of the elements of A and hence A-l for small a and P-l, but now, 
at least for P + a-,, we find that for both cases Ds-l is of O(a2P2). For the former 
case for which k is of the form (4.12), one obtains 

\ 

k = ra + sb ( r ,  s are integers which are not both zero) 

n2 a2P2 
840 

D,-I=--- I a1 -6 uu, (4.14) 
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whilst for the latter case for which k is of the form (4.13), 
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, -  
( r ,  s nzt bo% zero) 

Again, at lowest order, these results are identical to (4.5). It is interesting to note that 
when (4.10) possesses non-trivial solutions so that Ds-I is of order P2a2 the 
dispersion due to the flow is purely longitudinal. 

We have thus shown that for a square array of cylinders and for a cubic array of 
spheres, any bulk flow velocity U for which U- k = 0 has non-trivial solutions, gives 
rise to an effective diffusivity of O(P2) as P-2 00 independently of the solid volume 
fraction (except perhaps for flows for a cubic array of spheres without reflectional 
symmetry for which this result has been proved only for P 4 a-'). 

4.4. Results and discussion 

In  figure 2 we compare the results of the present theoretical analysis with 
experimental measurements of the longitudinal diffusivity due to flow parallel to  the 
one of the axes of a simple cubic array of spherical particles (Gunn & Pryce 1969). 
The theoretical curves (solid lines) are the sum of the convective contribution 
obtained from (4.5) and the purely conductive contribution calculated by Sangani & 
Acrivos (1983). Although (4.5) is strictly valid only in the limit of small solids volume 
fraction, for the purposes of this comparison we have evaluated it for a volume 
fraction 0.52 corresponding to a close-packed simple cubic array. Both theory and 
experiment indicate that the longitudinal diffusivity grows as P2 at high PBclet 
numbers. The theoretical prediction of the magnitude of the diffusivity is a factor of 
four smaller than the experimental measurement. This discrepancy is not surprising 
as we have not satisfied the boundary conditions on the particle surfaces, which 
would be expected to enhance the dispersion. For the high value of a in a bed of close- 
packed spheres we cannot predict the precise value of the diffusivity from the present 
analysis, but we can predict the functional dependence of the diffusivity on the 
P6clet number. 

A precise value of the diffusivity is obtainable by solving the full boundary-value 
convective-diffusive problem in a unit cell. Eidsath et al. (1983) carried out such a 
numerical calculation for flow parallel to  an axis of a square array of cylinders. 
Unfortunately, the calculations of Eidsath et al. do not exhibit the proper asymptotic 
behaviour at the high- and low-PBclet-number limits. At high PBclet number they 
found the longitudinal diffusivity growing roughly as P1.' rather than as P2, and 
although they found a weak dependence of the transverse diffusivity on the PBclet 
number, they did not reach a constant transverse diffusivity at high PBclet numbers. 
Their results also fail to match the pure-conduction results of Rayleigh (1892) and 
Perrins et al. (1979) in the limit of low PBclet numbers. It is not known whether these 
discrepancies are due to numerical inaccuracies, to not having achieved the high-P 
limit, or reflect a more serious error. 

If the average flow is not perpendicular to any vector in the reciprocal lattice, i.e. 
if U-k =l 0 for all k, then both the axial and transverse diffusivities are independent 
of the PBclet number a t  high flow rates. I n  simple cubic and square arrays this 
condition implies that the flow is not perpendicular to any axis of the real lattice, but 
t'his result does not hold for a general lattice structure. In  this case (4.5) or (4.6) give 
the contributions to the effective diffusivity arising in the bulk fluid away from the 
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FIGURE 2. Effective diffusivity for flow parallel to an axis of a cubic array of spheres. The 
theoretical values (solid curves) of the longitudinal diffusivity D,, and the transverse diffusivity 
D, and the experimental values (squares) of the longitudinal diffusivity measured by Gunn & Pryce 
(1969) are plotted as a function of the PBclet number P .  A solids volume fraction of 0.2 was 
used. 

diffusive boundary layer near solid surfaces. The O(a3) contributions resulting from 
the finite size of the particle may be calculated to leading order in large PBclet 
number as if the particles were isolated in an unbounded fluid (Koch & Brady 1985). 
Thus, these contributions are independent of the structure of the medium and are the 
same in ordered and disordered media. The full behaviour of the effective diffusivity 
at high PBclet number and small a for off-axis flow is obtained by adding (4.5) to the 
O(a4P In (Pa) )  and O(a5P2(D/D,) m-l) contributions from the diffusive boundary 
layer and the interior of the particle, respectively. The latter contributions have been 
calculated in Koch & Brady (1985). Here, D, is the diffusivity of the tracer in the 
solid phase, and m is the solubility ratio of the tracer in the solid and fluid phases. 
In the subsequent discussion and in figures 3 and 4 we refer only to the contribution 
to the effective diffusivity from the bulk fluid, i.e. from (4.5) or (4.6). 

In figure 3 we plot the effective diffusivity due to off-axis flow in a square array of 
cylinders. The average velocity is 

E 

7t 
u = - 1, + (1 - € / X 2 ) t  l,, (4.16) 

with E = 1, where 2 and y are the axes of the square array. The irrationality of x 
assures that the velocity is not perpendicular to any of the lattice vectors, which 
must be rational. At non-zero flow rates the effective diffusivity is non-diagonal both 
in the axes (2, y) of the lattice and in the axes defined by the flow. Thus, in figure 3 
we must include three components D,,, D,,, and D,, = D,, of the diffusivity. 

At high PBclet numbers the diffusivities approach constant values as expected, but 
these values may be quite large. In fact, if the flow is nearly parallel to an axis of 
symmetry - deviating by a small angle 6 - the longitudinal diffusivity grows as P2 up 
to a PBclet number of order l/e. 

At P % l / ~ ,  the longitudinal diffusivity asymptotes to a constant value of order 
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FIQURE 4. Longitudinal diffusivity due to flow deviating slightly from an axis of a square array of 
cylinders. The longitudinal diffusivity D,, is plotted as a function of the PBclet number for flow 
described by equation (4.16) with E varying from lo-' to lo-". The sine of the angle between the 
average flow direction and the lattice axis is proportional to E .  The solids volume fraction is $ = 
0.02. 

1/E2. This situation is illustrated in figure 4, where the longitudinal diffusivity in a 
square array of cylinders is plotted as a function of Pbclet number for the flow (4.16) 
with E ranging from to This behaviour occurs because a tracer must pass 
through many O( l/s) unit cells before it samples the entire microstructure by 
convection. Thus, the characteristic time for convective sampling is h/UE, while the 
time for diffusive sampling is h2/D ; the criterion for convective sampling to dominate 
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is then h/Ue 4 h 2 / D ,  or P 9 1/e. For P 4 1/e diffusive sampling dominates and we 
have Taylor dispersion just as in the on-axis-flow case; for P 9 l/s the convective 
sampling becomes important and the longitudinal diffusivity reaches a constant 
value. (In the foregoing discussion we have considered only values of e that  are not 
products of 7c and a rational number, so that U - k  =+- 0.) 

In  an actual experiment with a periodic porous medium it  may not be possible to 
ensure flow along a direction for which U-k = 0, and then one might expect to 
always observe a diffusivity that is independent of P as P-t GO. However, since the 
off-axis diffusivity initially grows as P2, a sample size much greater than l/e would 
be required before the final asymptotic behaviour was reached. Hence, one should 
expect to see P2 behaviour in periodic porous media unless care is taken to ensure off- 
axis flow with a large enough sample. 

In  this section we have obtained results for periodic media with the simplest 
structures. The general discussion in $3,  however, applies to any structure within the 
unit cell. Specifically, the presence of a periodic structure precludes the possibility of 
mechanical dispersion, which arises owing to  the stochastic nature of the solid 
boundaries in a disordered medium, 

We have not specifically considered the possible consequences of deterministic 
chaos on dispersion in periodic porous media. Studies of tracer particle trajectories 
in other systems (Aref 1984) suggest the possibility that a tracer in a three- 
dimensional periodic medium (a system with three degrees of freedom) might sample 
all or part of the space within the unit cell in an apparently random manner. One 
might further speculate that  the resulting ‘chaotic dispersion ’ might be independent 
of the molecular diffusivity (like mechanical dispersion in a disordered medium). 
Nonetheless, there is a fundamental qualitative difference between chaotic dispersion 
(if it  exists) and mechanical dispersion. Physically, mechanical dispersion results 
from the stochastic nature of the solid structure and the resulting velocity field in a 
disordered medium, while chaotic dispersion must result from the complexity of the 
tracer trajectories despite the deterministic nature of the solid structure and velocity 
field in a periodic medium. Mathematically, mechanical dispersion arises from the 
small-wavenumber (large-wavelength) limit of the integral (Koch & Brady 1985, eq. 
3.13) for the effective diffusivity in a disordered medium. From the arguments in $3  
of this paper it is clear that no similar behaviour can occur a t  small or moderate 
wavenumbers in a periodic system. Chaotic dispersion could only manifest itself 
mathematically as a large-wavenumber (small-wavelength) divergence of the sum 
(3.5) for the effective diffusivity. This fundamental difference is further illustrated by 
the fact that mechanical dispersion occurs in random two-dimensional systems, while 
deterministic chaos cannot occur in two dimensions. Furthermore, in many systems 
for which deterministic chaos has been found only part of space can be sampled by 
the chaotic motion (see, for example, Aref 1984). If part of the unit cell in a periodic 
medium were not reached by the chaotic motion it could only be sampled by 
molecular diffusion, leading to O(P2) Taylor-dispersion contributions to the effective 
diffusivity. It is clear then that the mechanisms of dispersion in ordered and 
disordered porous media differ qualitatively and it is dangerous to draw conclusions 
about dispersion in disordered media from studies of ordered media. 

This work was supported in part by a grant from Monsanto Co. R. G. C. began the 
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